Microbial Informatics in Association with Disease Biology: A Multi-Omics Approach on Computational Microbiology Applications

Authors

Debaleena Samanta, MSc  1 , Malavika Bhattacharya, PhD  2
Department of Biotechnology, Techno India University, West Bengal, India. 1 , Department of Biotechnology, Techno India University, West Bengal, India. 2
“crossref”/
Views: 21  
Downloads: 15  

##plugins.themes.bootstrap3.article.main##

Abstract

Background: Bioinformatics is a scientific sub-discipline that covers the area of biology at multi-disciplinary levels of microbiology, immunology, molecular biology, biochemistry, genetics, proteomics etc. This is a technical analysis of computational biology that collect and convert raw data into storage to analyse and disseminate this biological information such as, De-oxy-ribonucleic Acid, protein, amino acid sequences, alpha-fold 3-Dimensional structure, taxonomic hierarchy, polypeptides, messenger Ribonucleic Acid, chemical origin into annotated databases. Aim: Bioinformatics tools and programs are used to interpret and develop biological raw data and efficiently manage through accession database to create statistical approaches for evaluating relationships between large datasets. Scope: The advancement of genome sequencing technologies and metagenomic analysis have well developed microbial informatics applications to study microorganisms and their functionality based on microbial interactions in natural and artificial environments. This large amount of microbial information has been structured, indexed and correlated with existing experimental evidences. The bioinformatics solutions of overwhelming research parameters are cross-connected with information science and microbiology in relevance. In the recent scenario, artificial intelligence techniques, aggregated statistical analysis methods and large-scale data input system have provided microbiology to evolve with data science. Key Insights: ‘‘Clinical Microbiology Informatics’’ deals with detection, identification and confirmation of antimicrobial susceptibility testing and communicates with clinicians about the importance of clinically relevant microbes. Clinical microorganisms in pathogenic diseases provide insights into genetic and molecular mechanisms of pathogen through bioinformatics analysis. Microbial bioinformatics applications are used for pathogen identification, characterization, mutation, detection of virulence factors, microbial engineering, vaccine targets, drug and vaccine combinations, disease regulation, host-immune evasion and diagnostic approaches. Future Perspective: This study highlights the critical significance of computational microbiology in comprehending microbial pathogens and their interactions with hosts by examining the nexus between microbial informatics and disease biology. Researchers can examine microbial populations, analyze genomic data, and pinpoint virulence factors linked to a range of illnesses by utilizing cutting-edge bioinformatics methods. We go on recent applications that improve our comprehension of microbial dynamics in illness contexts, including metagenomics, machine learning, and network analysis. The analysis highlights the potential of microbial informatics to guide treatment plans, enhance diagnostic techniques, and support vaccine research, all of which will ultimately lead to improvements in public health.

##plugins.themes.bootstrap3.article.details##

Microbial Informatics in Association with Disease Biology: A Multi-Omics Approach on Computational Microbiology Applications. (2025). Annals of Medicine and Medical Sciences, 1606-1622. https://doi.org/10.5281/
Review Article

Copyright (c) 2025 Debaleena Samanta, MSc, Malavika Bhattacharya, PhD

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License All articles published in Annals of Medicine and Medical Sciences are licensed under a Creative Commons Attribution 4.0 International License.

Debaleena Samanta, MSc, Department of Biotechnology, Techno India University, West Bengal, India.

Department of Biotechnology, Techno India University, West Bengal, India.

Malavika Bhattacharya, PhD, Department of Biotechnology, Techno India University, West Bengal, India.

Department of Biotechnology, Techno India University, West Bengal, India.

[1] Rana S, Singh V, Preeti, Bhardwaj N. Bioinformatics in microbial biotechnology: a genomics and proteomics perspective. Innovations in Information and Communication Technology Series. 2021:53-67.

[2] Liu H, Xin B, Zheng J, et al. Build a bioinformatic analysis platform and apply it to routine analysis of microbial genomics and comparative genomics. Protocol Exchange. Published April 25, 2022. doi:10.21203/rs.2.21224/v6

[3] Antipov D, Korobeynikov A, McLean J, Pevzner P. hybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics. 2015;32(7):1009-1015. doi:10.1093/bioinformatics/btv688

[4] Arboleya S, Bottacini F, O’Connell-Motherway M, et al. Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains. BMC Genomics. 2018;19(1):33. doi:10.1186/s12864-017-4388-9

[5] Ayling M, Clark M, Leggett R. New approaches for metagenome assembly with short reads. Brief Bioinform. 2019;20(6):1-11. doi:10.1093/bib/bbz020

[6] Beck D, Foster J. Machine learning techniques accurately classify microbial communities by bacterial vaginosis characteristics. PLoS One. 2014;9(2):e87830. doi:10.1371/journal.pone.0087830

[7] Bishara A, Moss E, Kolmogorov M, et al. High-quality genome sequences of uncultured microbes by assembly of read clouds. Nat Biotechnol. 2018;36(11):1067-1075. doi:10.1038/nbt.4266

[8] Yadav BS, Chauhan P, Kushwaha S. Bioinformatics resources for microbial research in biological systems. In: Tripathi V, Kumar P, Tripathi P, Kishore A, Kamle M, eds. Microbial Genomics in Sustainable Agroecosystems. Singapore: Springer; 2019. doi:10.1007/978-981-32-9860-6_3

[9] Zhou A, Xie S, Zhang Y, et al. Environmental Science and Pollution Research. 2021;28(29):38839. doi:10.1007/s11356-021-13231-y

[10] Azuaje FJ, Heymann M, Ternes AM, et al. Bioinformatics as a driver, not a passenger, of translational biomedical research: perspectives from the 6th Benelux bioinformatics conference. J Clin Bioinform. 2012;2(1):7.

[11] Zhang C, Xu S, Xu D. Bioinformatics applications in clinical microbiology. In: Wei DQ, Ma Y, Cho W, Xu Q, Zhou F, eds. Translational Bioinformatics and Its Application. Translational Medicine Research. Dordrecht: Springer; 2017. doi:10.1007/978-94-024-1045-7_15

[12] Du RF, Li JY, Liu JL, Zhao JZ. Application of bioinformatics in microbial ecology. Adv Mater Res. 2014;955–959:276-280. doi:10.4028/www.scientific.net/AMR.955-959.276

[13] Rhoads DD, Sintchenko V, Rauch CA, Pantanowitz L. Clinical microbiology informatics. Clin Microbiol Rev. 2014;27(4):1025-1047. doi:10.1128/CMR.00049-14

[14] El-Kareh R, Roy C, Williams DH, Poon EG. Impact of automated alerts on follow-up of post-discharge microbiology results: a cluster randomized controlled trial. J Gen Intern Med. 2012;27(10):1243-1250. doi:10.1007/s11606-012-2054-1

[15] Campos JM. Clinical microbiology informatics—its time has come. Rev Med Microbiol. 2003;14(3):105-108.

[16] Kim H. Bioinformatics tools in clinical microbiology and infectious disease prevention algorithms. Adv Biotech Micro. 2018;11(4):555820. doi:10.19080/AIBM.2018.11.55582

[17] Agüero F, Al-Lazikani B, Aslett M, et al. Genomic-scale prioritization of drug targets: The TDR Targets database. Nat Rev Drug Discov. 2008;7(11):900-907.

[18] Akarsu H, Bordes P, Mansour M, et al. TASmania: a bacterial toxin-antitoxin systems database. PLoS Comput Biol. 2019;15(4):e1006946. doi:10.1371/journal.pcbi.1006946

[19] Anand S, Kuntal BK, Mohapatra A, et al. FunGeCo: a web-based tool for estimation of functional potential of bacterial genomes and microbiomes using gene context information. Bioinformatics. 2020;36(8):2575-2577. doi:10.1093/bioinformatics/btz961

[20] Arango-Argoty GA, Dai D, Pruden A, et al. NanoARG: a web service for detecting and contextualizing antimicrobial resistance genes from nanopore-derived metagenomes. Microbiome. 2019;7(1):88. doi:10.1186/s40168-019-0703-9

[21] Aziz RK, Bartels D, Best A, et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:1-15. doi:10.1186/1471-2164-9-75

[22] Besser J, Carleton HA, Gerner-Smidt P, et al. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin Microbiol Infect. 2018;24(4):335-341. doi:10.1016/j.cmi.2017.10.013

[23] Boetzer M, Pirovano W. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information. BMC Bioinformatics. 2014;15(1):211. doi:10.1186/1471-2105-15-211

[24] Boisvert S, Raymond F, Godzaridis É, Laviolette F, Corbeil J. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol. 2012;13(12):R122. doi:10.1186/gb-2012-13-12-r122

[25] Tabish M, Azim S, Hussain MA, Rehman SU, Sarwar T, Ishqi HM. Bioinformatics approaches in studying microbial diversity. In: Malik A, Grohmann E, Alves M, eds. Management of Microbial Resources in the Environment. Dordrecht: Springer; 2013. doi:10.1007/978-94-007-5931-2_6

[26] Caporaso JG, Lauber CL, Walters WA, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621-1624. doi:10.1038/ismej.2012.8

[27] Novais RC, Thorstenson Y. The evolution of Pyrosequencing® for microbiology: from genes to genomes. J Microbiol Methods. 2011;86(1):1-7. doi:10.1016/j.mimet.2011.03.002

[28] Caporaso JG, Lauber CL, Walters WA, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4516-4522. doi:10.1073/pnas.1000080107

[29] Pawar S, Tan YC, Lahiri C. Bioinformatics algorithms and software for predicting microbiomes. In: Bramhachari PV, ed. Microbiome in Human Health and Disease. Singapore: Springer; 2021. doi:10.1007/978-981-16-3156-6_14

[30] Bansal AK. Bioinformatics in microbial biotechnology: a mini review. Microb Cell Fact. 2005;4:19. doi:10.1186/1475-2859-4-19

[31] Aloy P, Russell RB. Ten thousand interactions for molecular biologists. Nat Biotechnol. 2004;22(10):1317-1321. doi:10.1038/nbt1018

[32] Apweiler R, Attwood TK, Bairoch A, et al. InterPro: an integrated documentation resource for protein families, domains, and functional sites. Bioinformatics. 2000;16(12):1145-1150. doi:10.1093/bioinformatics/16.12.1145

[33] Prabha R, Rai A, Singh DP. Bioinformatics-driven big data analytics in microbial research. In: Wang B, Li R, Perrizo W, eds. Big Data Analytics in Bioinformatics and Healthcare. Hershey, PA: IGI Global; 2015:265-283. doi:10.4018/978-1-4666-6611-5.ch012

[34] Upadhyayula RS, Solanki PS, Suravajhala P, Medicherla KM. Bioinformatics tools for microbial diversity analysis. In: Satyanarayana T, Johri B, Das S, eds. Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications. Singapore: Springer; 2019. doi:10.1007/978-981-13-8315-1_2

[35] Narayan A, Singh A, Kumar S. Understanding microbiome science through big data analysis. In: Singh S, ed. Metagenomic Systems Biology. Singapore: Springer; 2020. doi:10.1007/978-981-15-8562-3_3

[36] Ghosh A, Firdous S, Saha S. Bioinformatics for human microbiome. In: Singh V, Kumar A, eds. Advances in Bioinformatics. Singapore: Springer; 2021. doi:10.1007/978-981-33-6191-1_17

[37] Goodswen SJ, Barratt JLN, Kennedy PJ, Kaufer A, Calarco L, Ellis JT. Machine learning and applications in microbiology. FEMS Microbiol Rev. 2021;45(5):fuab015. doi:10.1093/femsre/fuab015

[38] Turnbaugh PJ, Ley RE, Hamady M, et al. The Human Microbiome Project. Nature. 2007;449(7164):804-810. doi:10.1038/nature06244

[39] Wise MJ, Wanner BL. Welcome to Microbial Informatics and Experimentation. Microb Inform Exp. 2011;1(1):1. doi:10.1186/2042-5783-1-1

[40] Galloway-Peña J, Hanson B. Tools for analysis of the microbiome. Dig Dis Sci. 2020;65(3):674-685. doi:10.1007/s10620-020-06091-y

[41] Schirmer M, Smeekens SP, Vlamakis H, et al. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell. 2016;167(4):1125-1136.e8. doi:10.1016/j.cell.2016.10.020

[42] Xu S, Li X, Zhang S, et al. Oxidative stress gene expression, DNA methylation, and gut microbiota interaction trigger Crohn's disease: a multi-omics Mendelian randomization study. BMC Med. 2023;21(1):179. Published 2023 May 11. doi:10.1186/s12916-023-02878-8

[43] Ning L, Zhou YL, Sun H, et al. Microbiome and metabolome features in inflammatory bowel disease via multi-omics integration analyses across cohorts. Nat Commun. 2023;14(1):7135. Published 2023 Nov 6. doi:10.1038/s41467-023-42788-0

[44] Zhernakova A, Kurilshikov A, Bonder MJ, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352(6285):565-569. doi:10.1126/science.aad3369

[45] Huang J, Liu S, Li P, et al. Multi-omics analysis of gut-brain axis reveals novel microbial and neurotransmitter signatures in patients with arteriosclerotic cerebral small vessel disease. Pharmacol Res. 2024;208:107385. doi:10.1016/j.phrs.2024.107385

[46] Vich Vila A, Collij V, Sanna S, et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun. 2020;11(1):362. Published 2020 Jan 17. doi:10.1038/s41467-019-14177-z

[47] Li X, Hu S, Shen X, et al. Multiomics reveals microbial metabolites as key actors in intestinal fibrosis in Crohn's disease. EMBO Mol Med. 2024;16(10):2427-2449. doi:10.1038/s44321-024-00129-8

[48] Huang Y, Lu W, Zeng M, et al. Mapping the early life gut microbiome in neonates with critical congenital heart disease: multiomics insights and implications for host metabolic and immunological health. Microbiome. 2022;10(1):245. Published 2022 Dec 30. doi:10.1186/s40168-022-01437-2

[49] Rozera T, Pasolli E, Segata N, Ianiro G. Machine Learning and Artificial Intelligence in the Multi-Omics Approach to Gut Microbiota. Gastroenterology. 2025;169(3):487-501. doi:10.1053/j.gastro.2025.02.035

[50] Stenton SL, Pejaver V, Bergquist T, et al. Assessment of the evidence yield for the calibrated PP3/BP4 computational recommendations. Genet Med. 2024;26(11):101213. doi:10.1016/j.gim.2024.101213

[51] Thomas AM, Manghi P, Asnicar F, et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat Med. 2019;25(4):667-678. doi:10.1038/s41591-019-0405-7

[52] Wang Y, Zhou J, Ye J, et al. Multi-omics reveal microbial determinants impacting the treatment outcome of antidepressants in major depressive disorder. Microbiome. 2023;11(1):195. Published 2023 Aug 28. doi:10.1186/s40168-023-01635-6

[53] Dai Z, Coker OO, Nakatsu G, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 2018;6(1):70. Published 2018 Apr 11. doi:10.1186/s40168-018-0451-2

[54] Li T, Zhao Z, Peng M, et al. Multi-omics analysis reveals the interplay between intratumoral bacteria and glioma. mSystems. 2025;10(1):e0045724. doi:10.1128/msystems.00457-24

[55] Jacobs JP, Lagishetty V, Hauer MC, et al. Multi-omics profiles of the intestinal microbiome in irritable bowel syndrome and its bowel habit subtypes. Microbiome. 2023;11(1):5. Published 2023 Jan 10. doi:10.1186/s40168-022-01450-5

[56] Climacosa FMM, Anlacan VMM, Gordovez FJA, et al. Monitoring drug Efficacy through Multi-Omics Research initiative in Alzheimer's Disease (MEMORI-AD): A protocol for a multisite exploratory prospective cohort study on the drug response-related clinical, genetic, microbial and metabolomic signatures in Filipino patients with Alzheimer's disease. BMJ Open. 2024;14(11):e078660. Published 2024 Nov 27. doi:10.1136/bmjopen-2023-078660

[57] Murai H, Kodama T, Maesaka K, et al. Multiomics identifies the link between intratumor steatosis and the exhausted tumor immune microenvironment in hepatocellular carcinoma. Hepatology. 2023;77(1):77-91. doi:10.1002/hep.32573

[58] Kim H, Nelson P, Nzabarushimana E, et al. Multi-omic analysis reveals transkingdom gut dysbiosis in metabolic dysfunction-associated steatotic liver disease. Nat Metab. 2025;7(7):1476-1492. doi:10.1038/s42255-025-01318-6

[59] Gao X, Sun R, Jiao N, et al. Integrative multi-omics deciphers the spatial characteristics of host-gut microbiota interactions in Crohn's disease. Cell Rep Med. 2023;4(6):101050. doi:10.1016/j.xcrm.2023.101050

[60] Farias Amorim C, Lovins VM, Singh TP, et al. Multiomic profiling of cutaneous leishmaniasis infections reveals microbiota-driven mechanisms underlying disease severity. Sci Transl Med. 2023;15(718):eadh1469. doi:10.1126/scitranslmed.adh1469

[61] Yang Y, Olah P, Radai Z, et al. Exploratory multi-omics analysis reveals host-microbe interactions associated with disease severity in psoriatic skin. EBioMedicine. 2024;105:105222. doi:10.1016/j.ebiom.2024.105222

[62] Huang L, Rao Q, Wang C, et al. Multi-omics joint analysis reveals that the Miao medicine Yindanxinnaotong formula attenuates non-alcoholic fatty liver disease. Phytomedicine. 2024;135:156026. doi:10.1016/j.phymed.2024.156022

[63] Xiong R, Aiken E, Caldwell R, et al. AI-driven multi-omics modeling of myalgic encephalomyelitis/chronic fatigue syndrome. Nat Med. 2025;31(9):2991-3001. doi:10.1038/s41591-025-03788-3

[64] Ali RO, Quinn GM, Umarova R, et al. Longitudinal multi-omics analyses of the gut-liver axis reveals metabolic dysregulation in hepatitis C infection and cirrhosis. Nat Microbiol. 2023;8(1):12-27. doi:10.1038/s41564-022-01273-y

[65] Wang Q, Sun LN, Shi H, et al. Multi-omics analysis reveals gut microbiota-metabolite interactions and their association with liver function in autoimmune overlap syndrome. World J Gastroenterol. 2025;31(25):106371. doi:10.3748/wjg.v31.i25.106371

[66] Gwak HJ, Lee SJ, Rho M. Application of computational approaches to analyze metagenomic data. J Microbiol. 2021;59(3):233-241. doi:10.1007/s12275-021-0632-8

[67] Wang D, Cui Y, Cao Y, He Y, Chen H. Human Microbe-Disease Association Prediction by a Novel Double-Ended Random Walk with Restart. Biomed Res Int. 2020;2020:3978702. Published 2020 Aug 10. doi:10.1155/2020/3978702

[68] Shi H, Wu M, Wu X, et al. Multi-omics integration reveals functional signatures of gut microbiome in atherosclerosis. Gut Microbes. 2025;17(1):2542384. doi:10.1080/19490976.2025.2542384

[69] Song Y, Zhou X, Zhao H, et al. Characterizing the role of the microbiota-gut-brain axis in cerebral small vessel disease: An integrative multi omics study. Neuroimage. 2024;303:120918. doi:10.1016/j.neuroimage.2024.120918

[70] Bai J, Eldridge R, Houser M, et al. Multi-omics analysis of the gut microbiome and metabolites associated with the psychoneurological symptom cluster in children with cancer receiving chemotherapy. J Transl Med. 2024;22(1):256. Published 2024 Mar 9. doi:10.1186/s12967-024-05066-1-98o

[71] Liu Z, Ma A, Mathé E, Merling M, Ma Q, Liu B. Network analyses in microbiome based on high-throughput multi-omics data. Brief Bioinform. 2021;22(2):1639-1655. doi:10.1093/bib/bbaa005

[72] Shan M, Xiao M, Xu J, et al. Multi-omics analyses reveal bacteria and catalase associated with keloid disease. EBioMedicine. 2024;99:104904. doi:10.1016/j.ebiom.2023.104904

[73] Wang Y, Zeng T, Tang D, Cui H, Wan Y, Tang H. Integrated Multi-Omics Analyses Reveal Lipid Metabolic Signature in Osteoarthritis. J Mol Biol. 2025;437(6):168888. doi:10.1016/j.jmb.2024.168888

[74] Ungaro F, Massimino L, D'Alessio S, Danese S. The gut virome in inflammatory bowel disease pathogenesis: From metagenomics to novel therapeutic approaches. United European Gastroenterol J. 2019;7(8):999-1007. doi:10.1177/2050640619876787

[75] Tiew PY, Mac Aogain M, Ali NABM, et al. The Mycobiome in Health and Disease: Emerging Concepts, Methodologies and Challenges. Mycopathologia. 2020;185(2):207-231. doi:10.1007/s11046-019-00413-z

[76] Du L, Zhang K, Liang L, et al. Multi-omics analyses of the gut microbiota and metabolites in children with metabolic dysfunction-associated steatotic liver disease. mSystems. 2025;10(4):e0114824. doi:10.1128/msystems.01148-24

[77] Jiang T, Li C, Li Y, et al. Multi-omics and bioinformatics for the investigation of therapeutic mechanism of roucongrong pill against postmenopausal osteoporosis. J Ethnopharmacol. 2025;337(Pt 2):118873. doi:10.1016/j.jep.2024.118873

[78] Tiew PY, Meldrum OW, Chotirmall SH. Applying Next-Generation Sequencing and Multi-Omics in Chronic Obstructive Pulmonary Disease. Int J Mol Sci. 2023;24(3):2955. Published 2023 Feb 3. doi:10.3390/ijms24032955

[79] Pita-Galeana MA, Ruhle M, López-Vázquez L, de Anda-Jáuregui G, Hernández-Lemus E. Computational Metagenomics: State of the Art. Int J Mol Sci. 2025;26(18):9206. Published 2025 Sep 20. doi:10.3390/ijms26189206

[80] Ben Khedher M, Ghedira K, Rolain JM, Ruimy R, Croce O. Application and Challenge of 3rd Generation Sequencing for Clinical Bacterial Studies. Int J Mol Sci. 2022;23(3):1395. Published 2022 Jan 26. doi:10.3390/ijms23031395

[81] Rhoads DD, Sintchenko V, Rauch CA, Pantanowitz L. Clinical microbiology informatics. Clin Microbiol Rev. 2014;27(4):1025-1047. doi:10.1128/CMR.00049-14

[82] Sabir M, Sohail A, Saeed A, Abbas S, Khan KA, Khalil M. Bioinformatics applied to microbiology. In: Microbiology in the Era of Artificial Intelligence. Boca Raton, FL: CRC Press; 2025:209-243.

[83] Kim H. Bioinformatics tools in clinical microbiology and infectious disease prevention algorithms. J Med Biomed Appl Sci. 2018;6(9):159-165.

[84] Ghosh R, Bera RD, Chandra S. An overview of bioinformatics and its application: a ray of hope towards microbial biotechnology. Int J Multidiscip Res. 2024;6(1):1-23.

[85] Jiang Y, Luo J, Huang D, Liu Y, Li DD. Machine learning advances in microbiology: a review of methods and applications. Front Microbiol. 2022; 13:925454. doi:10.3389/fmicb.2022.925454

[86] Kim H. Bioinformatics technology in clinical and public health microbiology applying computational methods. J Med Biomed Appl Sci. 2018;6(9):136-140.

[87] Sharma P, Dahiya S, Kaur P, Kapil A. Computational biology: role and scope in taming antimicrobial resistance. Indian J Med Microbiol. 2023;41:33-38. doi:10.1016/j.ijmmb.2023.02.008

[88] Raslan MA, Raslan SA, Shehata EM, Mahmoud AS, Sabri NA. Advances in the applications of bioinformatics and chemoinformatics. Pharmaceuticals (Basel). 2023;16(7):1050. doi:10.3390/ph16071050

[89] Durmuş S, Çakır T, Özgür A, Guthke R. A review on computational systems biology of pathogen–host interactions. Front Microbiol. 2015;6:235. doi:10.3389/fmicb.2015.0023

[90] Wen Z, Yan C, Duan G, Li S, Wu FX, Wang J. A survey on predicting microbe–disease associations: biological data and computational methods. Brief Bioinform. 2021;22(3):bbab001. doi:10.1093/bib/bbab001

[91] Sintchenko V. Informatics for infectious disease research and control. In: Infectious Disease Informatics. New York, NY: Springer; 2009:1-26. doi:10.1007/978-1-4419-0879-1_1

[92] Qu K, Guo F, Liu X, Lin Y, Zou Q. Application of machine learning in microbiology. Front Microbiol. 2019;10:827. doi:10.3389/fmicb.2019.00827

[93] Kuznetsov V, Lee HK, Maurer-Stroh S, et al. How bioinformatics influences health informatics: usage of biomolecular sequences, expression profiles and automated microscopic image analyses for clinical needs and public health. Health Inf Sci Syst. 2013;1(1):2. doi:10.1186/2047-2501-1-2

[94] Ali MA, Zahoor A, Niaz Z, et al. Bioinformatics and computational biology. In: Trends in Plant Biotechnology. 2024:281-334.

[95] Rukan M, Ejaz M, Hamza M, Munir HMW. Computational biology and its role in life science research. In: Microbiology in the Era of Artificial Intelligence. Boca Raton, FL: CRC Press; 2025:157-186.

[96] Evans RS, Pestotnik SL. Applications of medical informatics in antibiotic therapy. Adv Exp Med Biol. 1994;349:87-96. doi:10.1007/978-1-4757-9206-5_8.

Similar Articles

1-10 of 137

You may also start an advanced similarity search for this article.