Inflammatory Markers in Breast Cancer: A Tertiary Centre Experience
Authors
##plugins.themes.bootstrap3.article.main##
Abstract
Introduction: Chronic inflammation has shown to have a recognized part in carcinogenesis, influencing tumor initiation, development, and prognosis. In breast carcinoma, systemic inflammatory markers such as C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and interleukin-8 (IL-8) have been investigated as potential indicators of disease behaviour. This study was intended to evaluate the relationship between these inflammatory markers and key clinicopathological parameters in breast carcinoma patients. Methods: This study was undertaken at the Pathology department, Government Medical College, Jammu, between August 2023 and July 2024. Serum CRP and IL-6 levels were measured using spectrophotometry and chemiluminescence assays, respectively, while enzyme-linked immunosorbent assay (ELISA) was used to quantify TNF-alpha and interleukin-8. This study aimed to assess the levels of CRP, IL-8, IL-6, and TNF-α in patients with breast carcinoma and to examine their associations with key histopathological parameters. Results: 56 cases of breast carcinoma were included. The mean age of the patients was 51.15 ± 8.23 years. Elevated levels of CRP, IL-6, IL-8, and TNF-α were observed in 58.2%, 89.1%, 61.8%, and 89.1% of cases, respectively. CRP showed significant associations with lymph node status (p = 0.005), tumor stage (p = 0.002), tumor grade (p = 0.001), lymphovascular invasion (p = 0.001), ER/PR status (p < 0.001), and HER2neu expression (p = 0.003). No significant associations were observed between IL-6, IL-8, or TNF-α and most clinicopathological variables. Conclusion: Elevated CRP levels demonstrated strong correlations with adverse pathological features in breast carcinoma, proposing its potential as a cost-effective prognostic marker in routine clinical practice. Further prospective studies on a large scale are necessary to corroborate these findings and explore therapeutic interventions targeting inflammatory pathways.
##plugins.themes.bootstrap3.article.details##
Copyright (c) 2026 Zainab Hashim, Saniya Nisar, Rabiya Rasheed, Rajat Gupta, Subhash Bharadwaj

This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons License All articles published in Annals of Medicine and Medical Sciences are licensed under a Creative Commons Attribution 4.0 International License.
[1] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. doi:10.3322/caac.21660.
[2] Youlden DR, Cramb SM, Yip CH, Baade PD. Incidence and mortality of female breast cancer in the Asia-Pacific region. Cancer Biol Med. 2014;11(2):101-115. doi:10.7497/j.issn.2095-3941.2014.02.005.
[3] Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883-899. doi:10.1016/j.cell.2010.01.025.
[4] Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51(1):27-41. doi:10.1016/j.immuni.2019.06.025.
[5] Guthrie GJ, Charles KA, Roxburgh CS, Horgan PG, McMillan DC, Clarke SJ. The systemic inflammation-based neutrophil–lymphocyte ratio: experience in patients with cancer. Crit Rev Oncol Hematol. 2013;88(1):218-230. doi:10.1016/j.critrevonc.2013.03.010.
[6] Proctor MJ, Morrison DS, Talwar D, Balmer SM, Fletcher CD, O’Reilly DS, et al. An inflammation-based prognostic score (mGPS) in patients with cancer: a Glasgow Inflammation Outcome Study. Br J Cancer. 2011;104(4):726-734. doi:10.1038/bjc.2011.22.
[7] Guo L, Liu S, Zhang S, Chen Q, Zhang M. C-reactive protein and risk of breast cancer: a systematic review and meta-analysis. Sci Rep. 2015;5:10508. doi:10.1038/srep10508.
[8] Li M, Guo Y, Chen Y, Zhang L, Wang T, Shen M, et al. Elevated C-reactive protein and prognosis in patients with breast cancer: a meta-analysis. Oncotarget. 2017;8(37):62538-62549. doi:10.18632/oncotarget.18894.
[9] Ni X, Xu W, Jiang J, He X, Ma L, Li Y, et al. Prognostic significance of C-reactive protein in breast cancer: a systematic review and meta-analysis. J Invest Med. 2019;67(4):651-658. doi:10.1136/jim-2018-000872.
[10] Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15(4):234-248. doi:10.1038/nrclinonc.2018.8.
[11] Kumari N, Dwarakanath BS, Das A, Bhatt AN. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 2016;37(9):11553-11572. doi:10.1007/s13277-016-5098-7.
[12] Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res. 2008;14(21):6735-6741. doi:10.1158/1078-0432.CCR-07-4843.
[13] Balkwill F. Tumour necrosis factor and cancer. Nat Rev Cancer. 2009;9(5):361-371. doi:10.1038/nrc2628.
[14] Allin KH, Nordestgaard BG. Elevated C-reactive protein in the diagnosis, prognosis, and cause of cancer. Crit Rev Clin Lab Sci. 2011;48(4):155-170. doi:10.3109/10408363.2011.599831.
[15] Heikkilä K, Ebrahim S, Lawlor DA. Systematic review of the association between circulating C reactive protein and cancer. J Epidemiol Community Health. 2007;61(9):824-833. doi:10.1136/jech.2006.051292.
[16] MacDonald L, Baldassarre FG, Cheung S, Fyles A, Yaffe M, Verma S, et al. C-reactive protein and breast cancer recurrence: a systematic review. Breast Cancer Res Treat. 2013;141(3):433-440. doi:10.1007/s10549-013-2713-9.
[17] Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754. doi:10.3389/fimmu.2018.00754.
[18] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674. doi:10.1016/j.cell.2011.02.013.
[19] Pierce BL, Ballard-Barbash R, Bernstein L, Baumgartner RN, Neuhouser ML, Wener MH, et al. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J Clin Oncol. 2009;27(21):3437-3444. doi:10.1200/JCO.2008.18.9068.
[20] Mantovani A, Allavena P. The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med. 2015;212(4):435-445. doi:10.1084/jem.20150295.
[21] Sethi G, Sung B, Aggarwal BB. TNF: a master switch for inflammation to cancer. Front Biosci. 2008;13:5094-5107. doi:10.2741/3066.
[22] Sansone P, Bromberg J. Targeting the interleukin-6/JAK/stat pathway in human malignancies. J Clin Oncol. 2012;30(9):1005-1014. doi:10.1200/JCO.2010.31.8907.
[23] Dethlefsen C, Højfeldt G, Hojman P. The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res Treat. 2013;138(3):657-664. doi:10.1007/s10549-013-2488-z.
[24] Sullivan NJ, Sasser AK, Axel AE, Vesuna F, Raman V, Ramirez N, et al. Interleukin-8 regulates tumorigenicity and stemness in human breast cancer cells. Cancer Res. 2009;69(9):3479-3486. doi:10.1158/0008-5472.CAN-08-3190.
[25] Singh JK, Simoes BM, Howell SJ, Farnie G, Clarke RB. Recent advances reveal IL-8 signaling as a key therapeutic target in breast cancer. Breast Cancer Res. 2013;15(4):210. doi:10.1186/bcr3436.